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SUMMARY

In a more geometrical fashion than by the customary matrix approach the analysis
of lattice and lattice square designs is revisited. Pointing out canonical subspaces
in treatment effects subspace contained in observation space of which any canonical
vector ¢ by orthogonal projection on block effects subspace followed by orthogonal
projection on treatment space will be turned into Ac, where 0 < X < 1 is the associated
canonical value, forms a central theme. Best estimator of the treatment effect vector
in intra-block analysis follows immediately, as well as the residual variance factors
for estimated treatment pair differences after an advantageous reparameterization.
Block effects within superblocks supposed to be random lead to a reformulation of
using interblock information, and the value of all A will be reduced by a positive
factor w smaller than 1 (or wr and w, for lattice squares), canonical spaces remaining
unaltered. For exploring the required ratio of block variance(s) to residual variance
under the normality assumption, application of REML, modified by Kitanidis to
an iterative Gauss-Newton procedure extended with line search, is recommended in
preference to relying on expected mean squares which may only provide initial values.

KEY WORDS: lattice design, canonical values and spaces, treatment reparameteri-
zation for pairwise comparison variances, recovery of interblock information, REML
estimation of variance components, Gauss-Newton iteration, lattice square design.

1. Lattices: definition and notation

A lattice design is an incomplete block design consisting of at least two superblocks
each of which contains all p? treatments exactly once: within each superblock the
treatments are arranged in p blocks of size p according to at least two and at most
p + 1 orthogonal classifications.

*The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Califiski.
**Current address: Ritzemabosweg 20, 6703 AX Wageningen, The Netherlands.
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For p prime or the power of a prime there exist p + 1 mutually orthogonal clas-
sifications; for p equal to 6 there are at most 3 possible, and for p equal to 10, 12, 14
or 15 there are at least 4. It is not feasible to look at lattices with a value of p larger
than 17, to say the least. Let the number of superblocks or replicates be s and let
the subscript of a particular block classification be denoted as k. Let the number of
superblocks with block classification k be si; obviously

m
Zsk=s with 2<m<p+1.
k=1

For the specific values of p above, the upper bound of m will be smaller than p + 1.

2. Estimation of treatment effects; canonical spaces

We consider first the problem of finding the best estimates of treatment and block
effects under the assumption of additivity of those effects and on the basis of an
observation vector y in R™ with n = sp? whose disturbances with respect to expec-
tation (the sum of the relevant treatment and block effects) have zero expectation
and are mutually uncorrelated with unknown common variance o2. The additivity
assumption is equivalent to the statement that the expectation £y is an element of
the subspace (A, B) of R™ spanned by A and B, where A is generated by the p?
orthogonal vectors x;(i = 1,...,p?) consisting of merely ones within treatment class %
and zeroes elsewhere, and B similarly by the ps orthogonal vectors z; (j = 1,...,ps)
with merely ones within block class j and zeroes elsewhere.

The solution of the above estimation problem by least squares is equivalent to
finding a vector o € A with coordinate p?-vector T, and a vector 8 € B with coor-
dinate ps-vector ) such that a 4 3 is the orthogonal projection of y on (4, B), i.e.
find @ € A and 3 € B such that

y_(a+ﬁ)J—<AaB)'

By orthogonal projection on A and B, respectively, two equations emerge: P 4y —a—
P4B =0, and Pgy —Pgoa— 3 = 0. Orthogonal projection of the second equation on
A and subtraction of the result from the first equation yields an equation involving
o only

(I-P4Pp)a=Ps(y — Ppy), 1)
while the second equation gives

B =Pp(y — a). (2

In the present situation the spaces A and B have only the space G spanned by 1,
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(consisting of merely ones) in common (in other words: block and treatment spaces
are connected). By considering the orthogonal complements A* and B* of G in A and
B, respectively, it is easily seen that the right hand side d of (1) is orthogonal to G.
The solution of (1) for I-P 4P p restricted to A* can be obtained by knowledge of an
orthogonal canonical basis for A* consisting of vectors u; for which P4Pgu; = \u;
with 0 < )\; < 1. Then a will be

p’-1

> o= x)"tu

i=1
In the present special case of the given general solution procedure for incomplete block
designs we make the following observation. Let Aj be the p-dimensional subspace of
A consisting of vectors constant within each class of the classification Ay. The (p—1)-
dimensional subspace of A; orthogonal to G satisfies Z§=1 a; = 0 where j runs
through the p classes of A;. Application of Pp, i.e. replacing the elements within every
block by their average, leaves the elements in the blocks generated by Ay unchanged
while those in all other blocks will vanish. Subsequent application of P4 (replacing
the elements corresponding to any treatment by their average) assigns sia;/s to
all elements corresponding to treatments occurring in class j of Ag. Consequently
sk /s is canonical value of P4Pp for the orthogonal complement of G in Aj. These
m canonical spaces span a subspace of dimension m(p — 1) in A. The orthogonal
complement Am41 of Ay, ..., Ay, in A has dimension p?—1—-m(p—1) = (p—1)(p+1—m)
which vanishes for m = p + 1. Since each block sum for any vector in A,,; which is
not void will vanish due to the orthogonality of Ay,4; to every generator z; of B, the
canonical value of P4Pp for A,,;1 is zero.

Hencefor m=p+1

a= i(l —55/8) 1P, d = Zs(s —8;) 1Py, d. (3)
k=1 k=1

Since, form <p+1,d = Spt P4, d, we have

=) (1-sc/s)Pad+(d— > Pad)=d+) sp(s—sp)'Pad.  (4)
k=1 k=1 k=1

Recall that P 4, involves only replacing the elements corresponding to all treatments
which occur together in one block according to the classification Ay by their average.
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3. Variance of estimated treatment differences; reparameterization

For the establishment of the variance of treatment difference estimators it is conve-
nient to apply a reparameterization of the treatment effect 7; suggested by the form
of the solutions (3) and (4) for the estimation problem. For m = p+1 set 7; equal to
the sum of effects 74 (k =1,...,m) each due to the class of A to which treatment
1 belongs, and for m < p+ 1 add to such a sum a residual effect T(;)- This implies
the introduction of a seemingly excessive number mp or mp + p? of new parameters
instead of the original number p?.

If m = p+ 1 a solution for 74(;) can be equal to any element corresponding to
treatment 4 in the term with subscript k in (3), but for m < p -+ 1 one will use the
term with subscript & in the utmost right member of (4); for 7(;) the term d in the
same expression may be used.

It follows that the expression for the estimator of each new parameter in terms
of treatment class sums or treatment sums occurring in the right hand member of the
unreduced normal equations X’Xq = X'y (in addition there are block sums involved
which we do not bother about) is simply a multiplication of the relevant sum with
some constant. In other words, the proposed estimators of the new treatment para-
meters correspond to the use of a weak inverse of X'X with a diagonal submatrix C
concerning the new treatment effects. Note that the way the weak inverse acts upon
block totals is irrelevant for our purposes. This submatrix C can be used for the
establishment of the variance factor for any identifiable treatment contrast, all new
treatment effect estimators being seemingly uncorrelated.

If m = p+1 the p estimators of 74(;) at fixed & follow from (3) as the p different
elements occurring in s(s — s;) 1P 4,d, and since ps is the divisor of treatment class
sums required in P 4, d the estimation variance of the difference between two treat-
ments occurring together in blocks according to classification Ay involving 2(m — 1)
parameters 7y(;) will be as if these treatment effects are uncorrelated with a variance
factor of o2 for each individual treatment equal to

Pty (s—sk)7h (5)
k=1 .
ksk'
It is noted that if in this case sj is constant and thus equal to s/m then (5) reduces
to (p+1)/(ps), and if in particular s = p + 1 then (5) reduces to 1/p.
If m < p+1 there are 2(m — 1) parameters T(; involved in the difference

between two treatments occurring together in blocks arising from classification &’ and
in addition two parameters of type 7(;). The associated variance factor for such a
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treatment will be

sT1{14p? Z se(s —sp)1 . (6)
k=1
kK

If m < p+1 and the two treatments do not occur together in any block the restriction
k # k' must be removed from (6) due to the presence of 2(m + 1) parameters in such
a difference.

Ideas similar to those in Sections 2 and 3 appeared incompletely in Corsten
(1976). See also a related approach in Corsten (1985) as a reaction to Williams et al.
(1980).

4. Testing orthogonal treatment components

For the estimation of 02 one needs the difference between (y,y) and (a + 8, a + 3).
The latter term is found as the square of the projection of a+ 3 on B equal to
|Psy|* plus the square of the perpendicular from & + 8 on B. This perpendicular
a+ 3 —Ppgy is due to (2) equal to o — Ppga. Due to the orthogonality of o — Ppax
and Pga the square (¢ — Ppa, o — Ppa) = (o, &« — Pga) which by treatment-
wise summation of products is seen to be equal to (o, Pa{a — Pga)) and due to
(1) equal to (e, d). Hence |a + B|° = |Ppy|* + (e, d). For lattices with m = p+ 1
one finds from (3) that the squared perpendicular also needed for testing the nullity
of treatment effects under the assumption of normality of the disturbances will be
equal to Y-, s(s — sx) "1 |P 4,d|?. Obviously, each of these m terms can be used
for testing in a quasi-independent manner the treatment effects corresponding to any
of the classifications A, and similarly any contrast belonging to the effects of such
a classification. A similar decomposition of the adjusted treatment sum of squares
is possible for lattices with m < p + 1 and the m + 1 terms which appeared in the
middle part of (4), that is

m m
ZS(S - Sk)_l |PAkd|2 + {ldiz - Z iPAkdl2} :
k=1 k=1
Each of the first m components is a sum of squares based on class contrasts of treat-
ment sums adjusted for blocks to be multiplied with the relevant factor s(s — si)~1;
for the last term the multiplication factor is 1.

The variance 02 will be estimated as the ratio of |y|*> — |Psy|* — (e, d) and

(p-1(ps —p—1).
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5. Lattice with random blocks within replicates

If the randomization procedure of blocks within superblocks permits the model with
additive treatment and block effects both being fixed may be replaced with one with
fixed treatment and superblock effects, but with block effects superblocks as random
uncorrelated variables with common variance 02 and expectation zero; one hopes for
estimation of treatment effects with smaller variance. In vector notation we have

y = p+01y/PPpvy + ovo, (7

where p € E =< A, S >, S is the space of superblock effects, v; and vy are standar-
dized random vectors consisting of n(= p?s) uncorrelated random variables with zero
expectation and unit variance. Note that in the second term the individual terms
within any block are identical, those of Ppv; having variance 1/p and hence those of
the second term having variance %, as the model requires. Eq. (7) is equivalent to

Y =p+01/PPpvi +0cPpvy + ocPgLvy, (7a)

where B is the orthogonal complement of B in R". Since the second and the third
term are component-wise uncorrelated, (7a) can be replaced with

y = p+1/po? +02Ppgvy + oPgivy, (7b)

where vp and vy have the same properties as vg and v; had before. Since the co-
ordinates of orthogonal projections of a vector vg or vg on orthogonal subspaces are
uncorrelated one may instead of two vectors vy and vo as well use only one standar-
dized vector v. So we arrive at the final formulation of the model

y=p+1/po?+02Pgv+oPg.iv. (8)

Now the best estimate m of p = a++y, where 7y € S, will be presented while 0%/02 is
supposed to be known for the time being. Set g = 02/(0? + po?) with 0 < g < 1 and
consider \/gP gy+P g1y which equals \/gP gu-+P g1 p+0ov. Least squares estimation
based on covariance matrix 02, requires finding m € E such that VIPs(y —m) +
P ;. (y —m) is orthogonal to any similarly transformed element e of a basis of E, i.e.
to \/gPpe + Pp.e. Equivalently, gPp(y — m) + P 51 (y — m) should be orthogonal
to any e in E which in turn is equivalent to Pg[gPp(y —m) + Pg1(y ~m)] = 0.
Orthogonal projection of the expression in square brackets on S and A, respectively,
using Pz1 =1 —Pp, and introducing w = 1 — g gives the equations:

Ps(a+7) ~wPsPp(a+v) = Psy—wPsPpy, (9a)
Pa(a+7) —wPsPg(a+7) Py —wP4sPgy. (9b)
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By the unessential restriction of o to orthogonality to G, o will be orthogonal to S.
Due to PsPp = Ps (9a) reduces to v = Pgy. Inserting this outcome into (9b) and
using P4Pg = P¢ one can reduce (9b) to

(I-wP4sPp)a="Pu[(y — Pgy) — wPa(y — Pgy)). (10)

Equation (10) is similar to (1) but now P g has been replaced everywhere with wPp
and y with y — P¢y, i.e. subtraction of the general mean from the observations. The
latter operation causes the right hand side of (10) djo to be orthogonal to G.

Now wP 4Pp obviously has the orthogonal complements of G in Ay,..., Ay
again as canonical spaces, the canonical values being wsy,/s for k = 1, ...,m, and 0 for
k=m+1if Ayy is not void. The solutions of (10) will be modifications of those
in (3) and (4) in the sense that d will be replaced with d;o and that all canonical
values will be multiplied with w. Similarly, the variance factors of o2 for treatment
pair comparisons will be straightforward modifications of (5) and (6) in replacing each
s with wsg. Obviously, these factors are monotone increasing in w.

Hence the largest values will be reached as w approaches unity, i.e. if po? grows
large compared to o2. This situation where little or nothing can be gained over in-
trablock analysis was also the reason to consider the superblock effects as fixed. On
the other hand, if block variance tends to be negligible in proportion to 2 the solu-
tion of (10) will tend to a = P4y — Pgy, i.e. simply ignoring block effects within
superblocks with the minimal variance factor for treatment pair comparisons equal
to 1/s.

6. Estimation of variance components in lattices

Now we address the problem of getting information on the two variances involved
or their proportion. First we shall find preliminary estimates of both parameters
by way of squares of orthogonal projections of y on well chosen subspaces whose
expectations are linear combinations of the variances concerned. Those squares may
lead to unbiased estimators of the parameters concerned. They may be used as initial
values for an iterative procedure based on the method of maximum likelihood which
in turn is based on the assumption of normality of the vector v in equation (8).

As far as the variance 02 is concerned an unbiased estimate is available as the
ratio of the squared perpendicular from y on the space (4, B) and the dimension of
residual space, the orthogonal complement of (A, B) in R™ according to the intra-
block analysis. This is an analysis under the condition that the random block effects
have the values which they take. Under that condition the ratio above has expectation
o2. Since this expectation does not depend on the condition or more specifically on
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the values of the block effects mentioned in the condition that expectation is also
unconditionally correct.

For the variance between blocks within superblocks we consider the expectation
of the square of the perpendicular from y on (A, .S) . The contribution from u vanishes
as p =P pu+Pgspu—Pgpu. The random part of £ |y|®yields from (8) (po? + o2)sp +
02(sp® — sp) = sp2(0? + 02), that of £ |[Pgy|* gives s(po? + 02) since S C B, and
similarly £ |Pgy|? yields po? + 02 since G C B. Finally, the design is binary, i.e. each
(super) block contains each treatment only once or not at all; hence the contribution
1/s times the squared sum of observations of any treatment to £ |P Ay|2 will be 02+ 02
and thus € |P 4y|” yields p?(o% + 0?). Hence £[|y|” — [Pay|® - |Psy|® + [Peyl’] =
(s—1)p*(02+02%) —(s—1)(po? +02) = (s—1)(p—1)[po} + (p+ 1)0?]. Thus the ratio
of the latter squared perpendicular and (p—1)(s— 1) will be an unbiased estimator of
po? + (p+1)o2. Subtraction of (p+1) times the previous estimate of o2 and division
by p gives an unbiased estimator of o3.

Under the assumption of normality of y in (7) equivalent to that in (8) with
i € (A,S) and covariance matrix V = 02J,,, + 03I, where J, »s consists of ps
diagonal blocks J,, = 1,,1;,, p of which belong to the same superblock, the provisional
estimates of 03 and 02 may be improved by the application of the restricted or reduced
maximum likelihood method. This requires using the residuals with respect to P4 g
i.e. y — (Pay + Psy — Pgy), striking out all elements belonging to one treatment
and one superblock, thus s + p — 1 elements, in order to remove linear dependence
and so continuing with r = Cy. Obviously, ér = 0 and Cov r = W =CVC’ =
02CJ,sC' + 03CC'.

Setting 02 = a;(i = 0,1), CJ,,,C’ = Wy, CL,C' = Wj and thus W, =
oo Wy + a1 W one finds the likelihood equations g{a) = 0 for the minimization of
—In L= %ln det W, + %r’ ‘W, r with respect to «;, where

[9(@)]; = %u(w;lwi) - -;-r'w;;lwiw;lr (i=0,1).

Successive iteration steps in a Gauss-Newton procedure with line search are given by

59_@4)] -

Qj+1) = Q@G) — Pj [ Ba g(a(J)) (.7 = 0,172"');

a=a(j)

where 0 < p; <1 is chosen as the first non-negative integer power of % such that
—In L(egj;11)) < —InL(oy;)) while dg(r)/(cr) will be replaced by its expectation
according to Fisher’s scoring method £[g(c(;))g((;))’]- If @ is the maximum likeli-
hood solution this expectation is the information matrix equal to () with typical



General analysis of unbalanced lattices and lattice squares 9

element 1tr[W, W, W W,]. Thus the iteration steps are given by

1 _ )
agy = ag) — pslgFlem) ela) (F=0,1,2,..).

The two-component vector ag) may be provided by the previous estimates based on
expected mean squares.

The present procedure is due to Kitanidis (1983) and was also discussed and
given more detail by Corsten (1994) in a different context. It is essentially different
from that by Nelder (1968) which involves a functional iteration procedure.

7. Lattice squares with fixed blocks

A lattice square design is a row by column arrangement of p? elements (treatments) in
s > 2 superblocks or replicates, each superblock being a square consisting of p rows as
well as p columns each of size p for the adjustment e.g. of level differences in fertility,
the p? elements being arranged within a superblock in two pairwise orthogonal ways
from the maximally p + 1 possibilities.

The solution of the estimation problem of the additive treatment and non-random
block effects is analogous to the previous situation where A is again the p?-dimensional
space of treatment effects, but B is now the space generated by the space B, spanned
by the ps row blocks, as well as B, spanned by the ps column blocks. It will be given
by (1) and (2) with d = P 4(y — Ppy) orthogonal to the intersection G of A and B.
Here Pp = Pp_ + Pp, — Pg where S is the intersection of B, and B,, the space of
superblock effects.

In looking for canonical vectors and values of P 4P g one considers the p-dimensio-
nal subspace Ay of A constant within each class of the classification k. The subspace
of Ay, orthogonal to G satisfies ?:1 a; = 0. Obviously, that subspace is also ortho-
gonal to S. Some of the classes of Ay will coincide with those according to row blocks
or to column blocks while each remaining row or column block contains all elements
aiy, ..., ap. Let the number of superblocks whose row blocks correspond with the classi-
fication Ay, be equal to sk, and that for column blocks to sx.. We make this distinction
since we need it in later developments. As row and column classification k& will never
be equal within any superblock, application of Pg_ to the defined subspace of Ay
which leaves the row blocks generated by A unchanged, while the elements in all
other row blocks will vanish, may simply be added to P g, which leaves the elements
generated by Ay, in essentially different superblocks unchanged while those in all other
column blocks will vanish. Hence the effect of P is here equivalent to Pg_+ Pp_
which also follows from the mentioned orthogonality of the relevant subspaces to S.
Subsequent application of P 4 assigns (sk, + Skc)a;/s to all elements corresponding to
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treatments occurring in class j of Ax. Consequently, (si, + Skc)/s is canonical value
of P4Pp for the orthogonal complement of G in A. Note that >, (skr + Skc) = 2s.
Let for convenience s, + si. be denoted as sx. The m orthogonal canonical spaces
span a subspace of dimension m(p — 1). Let the orthogonal complement of A4, ..., Ap,
in A be called A4, of dimension (p — 1)(p + 1 — m), vanishing for m = p + 1. Each
vector in A,,y; which is not void has vanishing row and column block sums due to
the orthogonality of A,,+; to the generators of B, and B, consisting of vectors whose
elements in one specific block are 1, and zero elsewhere.

Hence the solutions for m = p+ 1 and m < p + 1 will again be (3) and (4),
respectively, although for the same p, s, and similar ratios between s; up to s,, the
coefficients of P 4, d will be larger, i.e. closer to 1, than for lattice designs. Further, d
isnow P 4(y—Pp,y—Pp,y+Psy). Although the variance factors (5) and (6) have the
same appearance as before, their values for the same p, s, and similar ratios between
s1 up to s, will be larger than for lattices. This will, hopefully, be outweighed by a
smaller residual variance (estimate).

8. Lattice square with random row and column effects within replicates

Now we turn to the model with fixed treatment and superblock effects, but with row
and column block effects within superblocks being random uncorrelated variables with

variance 02 and o2, respectively, and with expectation zero. The counterpart of (7)
will be:

y=p+0./pPp.v+0./PPpv+ov (11)

with g € E = (A, B). On the introduction of B} and B as orthogonal complements
of S in B, and B, respectively, (11) can be decomposed into

n+0or/pPsv  + 0. /DPsv  + oPgv
+or \/ﬁPB,‘:V + O'PB;V
+ 0c/PPB:v + oPp:v
+ G'PB_LV

where B+ is the orthogonal complement of B in R".
This can be reduced to

B+ \/po2 +po? + 02Pgv + \/pol + 0?Pp.v + \/po? + 0?Ppg:v + oPpg.v. (11a)

Without loss of essentials the second term can be incorporated into p as a component
of S. So we find

B+ \/poZ + 02Ppxv +/po? + 0?Pg.v + oPp..v, (12)
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where p € (A, S) and B*! is the orthogonal complement of (B}, BY) in R", as the
counterpart of (8).

Setting g, = 02/(0%2+po?) and g, = 02/(c2+po2) one sees that best estimation of
prequiresm=ca+v € E=(A,S),a € Aandy € S such that Pg[g,Pp«(y — m)+
9.Pp:(y — m)+Pp..(y — m)] = 0. Application of Pg on the form in square brackets
leads to vanishing of the first two terms, and since S C B** to Pg(ax + v) = Pgy.
Setting o orthogonal to G and thus to S leads to v = Pgy as before. Next, projection
on A of the same expression where -y vanishes in the first two terms while in the third
term it can be replaced with v = Pgy leads to the counterpart of (9b):

I- w,PsPpx — wcPAPB;)a =Puly —Psy — w,Pp:y — wcPBZY]) (13)

where w, =1—g, and w, =1 —g..
Note that the right hand side of (13) to be denoted as d;3 is orthogonal to S. On
the other hand, it can be replaced with

diz =Puly — Pgy — w.(PB,y — Pgy) — w.(PB.y — Pcy)

since PsPg = Pg.

Further, the orthogonal complements of G in Ay, ..., A,, will be canonical with
respect to w,PsPpx + w.PaPp~ and the canonical values will be Ay = (w,skr +
WeSke)/s for k = 1,...,m, while that for A,,41, if it is not void, will be zero again.
The solution for « follows accordingly:

> (1=X)'Pydis for m=p+1
k=1

and

diz+ Y Ae(l—M\)'Pg,diz for m<p+1.
k=1

Similarly, the estimation variance factors of o2 for effect difference between a pair of
treatments occurring together in blocks according to A, will be analogously to (5)
and (6)

m

2(1 — M) Yps for m=p+1
k=1
k#k'

Z/\k(l—)\k)‘l/ps-i-l/s for m<p+1.

k=1
kK
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The restriction k # k' is omitted from the last equation if the pair of treatments does
not occur together in any block.

9. Variance components estimation in lattice squares

Finally, the provisional estimation of ¢ and 02 will be considered which may be
followed by the application of the maximum likelihood method sketched before under
the normality assumption in order to improve the three variance component estimates
together.

First an alternative method of obtaining an unbiased estimate of ¢ for the
lattice with model y = p + 1/po? + 02Pgv + oPp.v where u € (4,S) will be
presented. Obviously, £ |y|* = |u|® + p®s0? + p2s02. If R is the residual space in R™
orthogonal to (A, S) we have E[ly|* — |Pry|?] = |u|* + p?s02 + (p? — 1+ ps)o2. Since
E[[Psy|’] = s(po? + 0?) we have E|y[* — € [Pry[* — £|Psy|* = |ul® — [Pspl* +
(p*s —ps)o? + (p? — 1 + ps — s)o? pertaining the projection of y on the space spanned
by effects of A* and those of blocks within S.

The square of the component orthogonal to A-effect requires subtraction of the
square of the orthogonal projection of ¥y on A*, and hence equals |y|2 - |P Ry|2 -
|P5y|2 —|Pay* + |PGy|2 with expectation

plp—1)(s — 1o + (p ~ 1)s0?, (14)

i.e. the expectation of the square of the perpendicular on treatments from the vector
of block effects within superblocks. Division of this observable square equal to (o, d)+
|Psy|® - |Psy]® - [|PAy|2 - |PGy|2] by the corresponding dimension yields a mean
square with expectation 02p(s —1)/s+ o2. Subtraction of the previous estimate of o2
and division by p(s — 1)/s gives an unbiased estimate of o%.

It follows easily that this procedure leads to a result equivalent to the previous
one: the present sum of squares is an amount of |Pry|? or |y|® — [(a,d) + [Psy|?]
less than the previous one, causing merely a change of the coefficient of o2 in the
expectation to the amount of the dimension of R. Although the previous one is more
convenient the alternative method has its merits in what follows.

In order to get information on o2 in the lattice square model (11a):

Yy = p++/po? + po? + 02Pgsv + 1/po? + 0?Pg:v + \/po? + 0?Pg:v + Pg.v,

where pu € (A4,S) and B+ is the orthogonal complement of (B,, B.) in R™, we have
Ely|® = p?s02 4+ p?s0? + p?s0? + |u|* and £ |Pry|* = 02[p?s —p? +1—s—2s(p—1)]
so that £[ly|* — [Pry|’] = p?s0? + p?so? + (p* — 1 + 2ps — s)o? + ||”.

Further £ [Psy|* = (po?+po? +0%)s+[Psp|® . Hence £[ly|*~[Pry[* - [Psy[’) =
|ul® = [Psul® +p(p = 1)s(0? + 02) + (p? = 1 + 2ps — 2s)o.
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Joint information on ¢ and o2 is provided by the square of the perpendicular on
treatment space from the vector sum of row and column effects, i.e. by subtraction,
from the latter squared projection of ¥ on the space of treatment effects together with
all block effects within replicates, of [P 4y|* — |Pgy|? with expectation p2(c2 + o2 +
02)+|P 4+ p|*— (po2+po+02) leading to (a, d)+ |PB;y|2+ |P)5:y|2—|PAy|2-|—IPGy|2
with expectation

p(p—1)(s — 1)(02 + 02) + 2(p — 1)s0>. (15)
The square of the perpendicular on (A*, B}) from the vector of column effects will be
obtained as the difference between the latter squared perpendicular on A* from the
sum of row and column effects on the one hand and, on the other hand, the squared
perpendicular on A* from the row effects vector obtainable from the procedure above
where block effects from columns within superblocks are ignored, and the procedure
for lattices with block effects from rows only within superblocks will be recognized.

The difference is equal to

(o, d) + |PB;y|2 + |Pa:y 2 - [Pay - Peyl* + (16)
_[(arvdr) + lPB:Y|2 - IPAY - PGle]a

where (a, d) is the sum of squares for treatments adjusted for row and column effects
as obtained by means of the quantities sy in the canonical values, while (o, d,)
is the sum of squares for treatments adjusted for row effects belonging to a model
where column effects are ignored and thus obtainable by means of quantities sg, in
the canonical values. The latter difference (16) is numerically equal to

(,d) + |Ps:y|” - (e, dr),

although the squared projections of y on A* have different expectations under the
general model and the previous restricted model.

It follows that the expectation of the difference will be the difference between the
couple of expectations of squared perpendiculars (15) and (14), that is

p(p—1)(s = 1)o? + (p — 1)sc2.

Now, an estimate of 02 is obtained by subtracting the estimate of 62 from the
corresponding mean square and dividing the difference again by p(s — 1)/s.

On interchanging the role of row and column effects the difference providing
information on o2 is equal to

(e,d) + |Pasy|* = (@ do),

where the last inner product (or sum of squares for treatments adjusted for column
effects) will be obtained by using the quantities sk in the canonical values.
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Comparison with Williams et al. (1986) may show how much our approach in
Sections 7, 8 and 9 is more general, more direct, e.g. in avoiding the cumbersome
estimation of block effects, and less algebraic.
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Ogdélna analiza krat niezréwnowazonych i krat kwadratowych
z odzyskiwaniem informacji migdzyblokowej

STRESZCZENIE

Praca traktuje o analizie ukladéw kratowych i ukladéw krat kwadratowych w spo-
s6b bardziej geometryczny niz czyni sig to w podejéciach macierzowych. Oméwione
sg najlepsze estymatory efektéw obiektowych w analizie wewngtrzblokowej, jak réw-
niez czynniki zwigzane z wariancjg resztows. Proponowane jest zastosowanie metody
REML, zmodyfikowanej przez Kitanidisa na iteracyjng procedur¢ Gaussa-Newtona,
dla eksploracji ilorazu wariancji blokowych i wariancji resztowej przy zalozeniu nor-
malnoéci.

SLOWA KLUCZOWE: uklad kratowy, wartoéci i przestrzenie kanoniczne, odzyskiwanie
informacji migdzyblokowej, estymacja REML komponentéw wariancyjnych, metoda
Gaussa-Newtona, uklad kraty kwadratowe;j.



